Senin, 18 April 2011

Mikrobilogi Dasar

Posting By, Dona Mantiara
Tondano, Selasa 19 April 2011

A. Pengertian Mikroba

    Jasad hidup yang ukurannya kecil sering disebut sebagai mikroba atau mikroorganisme atau jasad renik. Jasad renik disebut sebagai mikroba bukan hanya karena ukurannya yang kecil, sehingga sukar dilihat dengan mata biasa, tetapi juga pengaturan kehidupannya yang lebih sederhana dibandingkan dengan jasad tingkat tinggi. Mata biasa tidak dapat melihat jasad yang ukurannya kurang dari 0,1 mm. Ukuran mikroba biasanya dinyatakan dalam mikron ( ), 1 mikron adalah 0,001 mm. Sel mikroba umumnya hanya dapat dilihat dengan alat pembesar atau mikroskop, walaupun demikian ada mikroba yang berukuran besar sehingga dapat dilihat tanpa alat pembesar.

B. Ruang lingkup Mikrobiologi Dasar

    Mikrobiologi adalah ilmu yang mempelajari mikroba. Mikrobiologi adalah salah satu cabang ilmu dari biologi, dan memerlukan ilmu pendukung kimia, fisika, dan biokimia. Mikrobiologi sering disebut ilmu praktek dari biokimia. Dalam mikrobiologi dasar diberikan pengertian dasar tentang sejarah penemuan mikroba, macam-macam mikroba di alam, struktur sel mikroba dan fungsinya, metabolisme mikroba secara umum, pertumbuhan mikroba dan faktor lingkungan, mikrobiologi terapan di bidang lingkungan dan pertanian. Mikrobiologi lanjut telah berkembang menjadi bermacam-macam ilmu yaitu virologi, bakteriologi, mikologi, mikrobiologi pangan, mikrobiologi tanah, mikrobiologi industri, dan sebagainya yang mempelajari mikroba spesifik secara lebih rinci atau menurut kemanfaatannya.

C. Penggolongan mikroba diantara jasad hidup

    Secara klasik jasad hidup digolongkan menjadi dunia tumbuhan (plantae) dan dunia binatang (animalia). Jasad hidup yang ukurannya besar dengan mudah dapat digolongkan ke dalam plantae atau animalia, tetapi mikroba yang ukurannya sangat kecil ini sulit untuk digolongkan ke dalam plantae atau animalia. Selain karena ukurannya, sulitnya penggolongan juga disebabkan adanya mikroba yang mempunyai sifat antara plantae dan animalia.

    Menurut teori evolusi, setiap jasad akan berkembang menuju ke sifat plantae atau animalia. Hal ini digambarkan sebagai pengelompokan jasad berturut-turut oleh Haeckel, Whittaker, dan Woese. Berdasarkan perbedaan organisasi selnya, Haeckel

    membedakan dunia tumbuhan (plantae) dan dunia binatang (animalia), dengan protista. Protista untuk menampung jasad yang tidak dapat dimasukkan pada golongan plantae dan animalia. Protista terdiri dari algae atau ganggang, protozoa, jamur atau fungi, dan bakteri yang mempunyai sifat uniseluler, sonositik, atau multiseluler tanpa diferensiasi jaringan.

    Whittaker membagi jasad hidup menjadi tiga tingkat perkembangan, yaitu: (1) Jasad prokariotik yaitu bakteri dan ganggang biru (Divisio Monera), (2) Jasad eukariotik uniseluler yaitu algae sel tunggal, khamir dan protozoa (Divisio Protista), dan (3) Jasad eukariotik multiseluler dan multinukleat yaitu Divisio Fungi, Divisio Plantae, dan Divisio Animalia. Sedangkan Woese menggolongkan jasad hidup terutama berdasarkan susunan kimia makromolekul yang terdapat di dalam sel. Pembagiannya yaitu terdiri Arkhaebacteria, Eukaryota (Protozoa, Fungi, Tumbuhan dan Binatang), dan Eubacteria.

D. Ciri umum mikroba

     Mikroba di alam secara umum berperanan sebagai produsen, konsumen, maupun redusen. Jasad produsen menghasilkan bahan organik dari bahan anorganik dengan energi sinar matahari. Mikroba yang berperanan sebagai produsen adalah algae dan bakteri fotosintetik. Jasad konsumen menggunakan bahan organik yang dihasilkan oleh produsen. menguraikan bahan organik dan sisa-sisa jasad hidup yang mati menjadi unsur-unsur kimia (mineralisasi bahan organik), sehingga di alam terjadi siklus unsur-unsur kimia.

Contoh mikroba redusen adalah bakteri dan jamur (fungi).
     Sel mikroba yang ukurannya sangat kecil ini merupakan satuan struktur biologi. Banyak mikroba yang terdiri dari satu sel saja (uniseluler), sehingga semua tugas kehidupannya dibebankan pada sel itu. Mikroba ada yang mempunyai banyak sel (multiseluler). Pada jasad multiseluler umumnya sudah terdapat pembagian tugas diantara sel atau kelompok selnya, walaupun organisasi selnya belum sempurna. Setelah ditemukan mikroskop elektron, dapat dilihat struktur halus di dalam sel hidup, sehingga diketahui menurut perkembangan selnya terdapat dua tipe jasad, yaitu:

1. Prokariota (jasad prokariotik/ primitif), yaitu jasad yang perkembangan selnya belum  sempurna.
2. Eukariota (jasad eukariotik), yaitu jasad yang perkembangan selnya telah sempurna.

    Selain yang bersifat seluler, ada mikroba yang bersifat nonseluler, yaitu virus. Virus adalah jasad hidup yang bersifat parasit obligat, berukuran super kecil atau submikroskopik. Virus hanya dapat dilihat dengan mikroskop elektron. Struktur virus terutama terdiri dari bahan genetik. Virus bukan berbentuk sel dan tidak dapat membentuk energi sendiri serta tidak dapat berbiak tanpa menggunakan jasad hidup lain.



      Selain virus ada jasad hidup yang disebut viroid, yaitu bahan genetik RNA yang bersifat infeksius (dapat menginfeksi) sel inang. Viroid membawa sifat genetiknya sendiri yang dapat diekspresikan di dalam sel inang. Jasad yang lebih sederhana dari virus adalah prion, yang terdiri suatu molekul protein yang infeksius. Adanya kenyataan ini merupakan perkecualian sistem biologi, sebab prion menyimpan sifat genetiknya di dalam rantaian polipeptida, bukan di dalam RNA atau DNA. Prion dapat menggandakan diri di dalam sel inang dengan mekanisme yang belum diketahui dengan jelas.


semoga bermanfaat bagi anda........

Fermentasi, Respirasi Anaerobik dan Fosforilasi


Posted by, Dona Mantiara
Senin, 18 April 2011

A. Fermentasi    
    Fermentasi adalah proses produksi energi dalam sel dalam keadaan anaerobik (tanpa oksigen). Secara umum, fermentasi adalah salah satu bentuk respirasi anaerobik, akan tetapi, terdapat definisi yang lebih jelas yang mendefinisikan fermentasi sebagai respirasi dalam lingkungan anaerobik dengan tanpa akseptor elektron eksternal.
      Gula adalah bahan yang umum dalam fermentasi. Beberapa contoh hasil fermentasi adalah etanol, asam laktat, dan hidrogen. Akan tetapi beberapa komponen lain dapat juga dihasilkan dari fermentasi seperti asam butirat dan aseton. Ragi dikenal sebagai bahan yang umum digunakan dalam fermentasi untuk menghasilkan etanol dalam bir, anggur dan minuman beralkohol lainnya. Respirasi anaerobik dalam otot mamalia selama kerja yang keras (yang tidak memiliki akseptor elektron eksternal), dapat dikategorikan sebagai bentuk fermentasi.

B. Respirasi Anaerobik
    Respirasi anaerobik adalah proses degradasi molekul organik untuk menghasilkan ATP tanpa bantuan oksigen.Banyak organisme prokariot dan protista tetap bertahan hidup tanpa oksigen.Mereka membuat ATP dengan menggunakan reaksi anaerobik,yaitu   fermentasi (transpor elektron anaerobik).Sebagian dari sel kita juga menggunakan jalur anaerobik untuk periode pendek tertentu pada saat sel-sel tersebut tidak memperoleh
suplai oksigen yang cukup.Namun respirasi anerobik hanya menghasilkan molekul 2 ATP saja.

C. Fosforilasi
    Fosforilasi adalah penambahan gugus fosfat pada suatu protein atau molekul organik lain. Fosforilasi dapat meningkatkan efisiensi katalitik enzim, mengubahnya menjadi bentuk aktifnya dalam satu protein, sementara fosforilasi enzim yang lain akan mengubahnya menjadi bentuk inaktif yang secara intrinsik tidak efisien. Meskipun fungsi enzim yang paling banyak terkena adalah efisiensi katalitik protein, fosforilasi dapat pula mengubah afinitasnya terhadap substrat, lokasi di dalam sel atau daya reaksinya terhadap regulasi oleh ligan alosterik. Fosforilasi mengaktifkan atau menonaktifkan banyak enzim protein sehingga dapat menyebabkan atau menghambat mekanisme kerja penyakit seperti kanker dan diabetes

Katabolisme dan Anabolisme


Posted by, Dona Mantiara
Senin, 18 April 2011


A.  Katabolisme

     Katabolisme adalah reaksi pemecahan / pembongkaran senyawa kimia kompleks yang mengandung energi tinggi menjadi senyawa sederhana yang mengandung energi lebih rendah. Tujuan utama katabolisme adalah untuk membebaskan energi yang terkandung di dalam senyawa sumber. Bila pembongkaran suatu zat dalam lingkungan cukup oksigen (aerob) disebut proses respirad, bila dalam lingkungan tanpa oksigen (anaerob) disebut fermentasi.

Contoh Respirasi : C6H12O6 + O2 ——————> 6CO2 + 6H2O + 688KKal.
                             (glukosa)

Contoh Fermentasi : C6H1206 ——————> 2C2H5OH + 2CO2 + Energi.
                               (glukosa) (etanol)

1.  Respirasi
      Respirasi yaitu suatu proses pembebasan energi yang tersimpan dalam zat sumber energi melalui proses kimia dengan menggunakan oksigen. Dari respirasi akan dihasilkan energi kimia ATP untak kegiatan kehidupan, seperti sintesis (anabolisme), gerak, pertumbuhan.

Contoh:
Respirasi pada Glukosa, reaksi sederhananya:
C6H,206 + 6 02 ———————————> 6 H2O + 6 CO2 + Energi
(gluLosa)

Reaksi pembongkaran glukosa sampai menjadi H20 + CO2 + Energi, melalui tiga tahap :

1. Glikolisis.
     Peristiwa perubahan :
     Glukosa => Glulosa - 6 - fosfat => Fruktosa 1,6 difosfat Þ
3 fosfogliseral dehid (PGAL) / Triosa fosfat Þ Asam piravat.
Jadi hasil dari glikolisis :
1.1. 2 molekul asam piravat.
1.2. 2 molekul NADH yang berfungsi sebagai sumber elektron berenergi
tinggi.
1.3. 2 molekul ATP untuk setiap molekul glukosa.

2. Daur Krebs.
Daur Krebs (daur trikarboksilat) atau daur asam sitrat merupakan pembongkaran asam piravat secara aerob menjadi CO2 dan H2O serta energi kimia

3. Transpor elektron respirasi.
     Dari daur Krebs akan keluar elektron dan ion H+ yang dibawa sebagai NADH2 (NADH + H+ + 1 elektron) dan FADH2, sehingga di dalam mitokondria (dengan adanya siklus Krebs yang dilanjutkan dengan oksidasi melalui sistem pengangkutan elektron) akan terbentuk air, sebagai hasil sampingan respirasi selain CO2.

     Produk sampingan respirasi tersebut pada akhirnya dibuang ke luar tubuh melalui stomata pada tumbuhan dan melalui paru-paru pada peristiwa pernafasan hewan tingkat tinggi.
Ketiga proses respirasi yang penting tersebut dapat diringkas sebagai berikut:

PROSES AKSEPTOR ATP

1. Glikolisis:
    Glukosa ——> 2 asam piruvat 2 NADH 2 ATP
2. Siklus Krebs:
2 asetil piruvat ——> 2 asetil KoA + 2 C02 2 NADH 2 ATP
2 asetil KoA ——> 4 CO2 6 NADH 2 PADH2
3. Rantai trsnspor elektron respirator:
    10 NADH + 502 ——> 10 NAD+ + 10 H20 30 ATP
    2 FADH2 + O2 ——> 2 PAD + 2 H20 4 ATP

Total 38 ATP

Kesimpulan :
Pembongkaran 1 mol glukosa (C6H1206) + O2 ——> 6 H20 + 6 CO2 menghasilkan energi sebanyak 38 ATP.

Fermentasi
     Pada kebanyakan tumbuhan den hewan respirasi yang berlangsung adalah respirasi aerob, namun demikian dapat saja terjadi respirasi aerob terhambat pada sesuatu hal, maka hewan dan tumbuhan tersebut
melangsungkan proses fermentasi yaitu proses pembebasan energi tanpa adanya oksigen, nama lainnya adalah respirasi anaerob.
Dari hasil akhir fermentasi, dibedakan menjadi fermentasi asam laktat/asam susu dan fermentasi alkohol.

A. Fermentasi Asam Laktat
Fermentasi asam laktat yaitu fermentasi dimana hasil akhirnya adalah asam laktat. Peristiwa ini dapat terjadi di otot dalam kondisi anaerob.

Reaksinya: C6H12O6 ————> 2 C2H5OCOOH + Energi
enzim

Prosesnya :

1. Glukosa ————> asam piruvat (proses Glikolisis).
enzim
C6H12O6 ————> 2 C2H3OCOOH + Energi

2. Dehidrogenasi asam piravat akan terbentuk asam laktat.
2 C2H3OCOOH + 2 NADH2 ————> 2 C2H5OCOOH + 2 NAD
piruvat
dehidrogenasa

Energi yang terbentak dari glikolisis hingga terbentuk asam laktat :
8 ATP — 2 NADH2 = 8 - 2(3 ATP) = 2 ATP.

B. Fermentasi Alkohol
     Pada beberapa mikroba peristiwa pembebasan energi terlaksana karena asam piruvat diubah menjadi asam asetat + CO2 selanjutaya asam asetat diabah menjadi alkohol.
Dalam fermentasi alkohol, satu molekul glukosa hanya dapat menghasilkan 2 molekul ATP, bandingkan dengan respirasi aerob, satu molekul glukosa mampu menghasilkan 38 molekul ATP.

Reaksinya :

1. Gula (C6H12O6) ————> asam piruvat (glikolisis)
2. Dekarbeksilasi asam piruvat.

Asampiruvat ————————————————————> asetaldehid + CO2.
piruvat dekarboksilase (CH3CHO)
3. Asetaldehid oleh alkohol dihidrogenase diubah menjadi alkohol
(etanol).
2 CH3CHO + 2 NADH2 —————————————————> 2 C2HsOH + 2 NAD.
alkohol dehidrogenase
enzim
Ringkasan reaksi :
C6H12O6 —————> 2 C2H5OH + 2 CO2 + 2 NADH2 + Energi

C. Fermentasi Asam Cuka
     Fermentasi asam cuka merupakan suatu contoh fermentasi yang berlangsung dalam keadaan aerob. Fermentasi ini dilakukan oleh bakteri asam cuka (Acetobacter aceti) dengan substrat etanol.
Energi yang dihasilkan 5 kali lebih besar dari energi yang dihasilkan oleh fermentasi alkohol secara anaerob.
Reaksi:
aerob
C6H12O6 —————> 2 C2H5OH ———————————————> 2 CH3COOH + H2O + 116 kal
(glukosa) bakteri asam cuka asam cuka. 

B.  Anabolisme


   Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.


1. Fotosintesis
  Arti fotosintesis adalah proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (tidak kelihatan).



Yang digunakan dalam proses fetosintesis adalah spektrum cahaya tampak, dari ungu sampai merah, infra merah dan ultra ungu tidak digunakan dalam fotosintesis.



Dalam fotosintesis, dihasilkan karbohidrat dan oksigen, oksigen sebagai hasil sampingan dari fotosintesis, volumenya dapat diukur, oleh sebab itu untuk mengetahui tingkat produksi fotosintesis adalah dengan mengatur volume oksigen yang dikeluarkan dari tubuh tumbuhan.

Untuk membuktikan bahwa dalam fotosintesis diperlukan energi cahaya matahari, dapat dilakukan percobaan Ingenhousz.


2. Pigmen Fotosintesis
  Fotosintesis hanya berlangsung pada sel yang memiliki pigmen fotosintetik. Di dalam daun terdapat jaringan pagar dan jaringan bunga karang, pada keduanya mengandung kloroplast yang mengandung klorofil / pigmen hijau yang merupakan salah satu pigmen fotosintetik yang mampu menyerap energi cahaya matahari.

Dilihat dari strukturnya, kloroplas terdiri atas membran ganda yang melingkupi ruangan yang berisi cairan yang disebut stroma. Membran tersebut membentak suatu sistem membran tilakoid yang berwujud sebagai suatu bangunan yang disebut kantung tilakoid. Kantung-kantung tilakoid tersebut dapat berlapis-lapis dan membentak apa yang disebut grana Klorofil terdapat pada membran tilakoid dan pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid, sedang pembentukan glukosa sebagai produk akhir fotosintetis berlangsung di stroma.
Faktor-faktor yang berpengaruh terhadap pembentukan klorofil antara lain :
1. Gen :

    bila gen untuk klorofil tidak ada maka tanaman tidak akan memiliki 
    klorofil.
2. Cahaya : 
    beberapa tanaman dalam pembentukan klorofil memerlukan cahaya, 
    tanaman lain tidak memerlukan cahaya.
3. Unsur N. Mg, Fe : 
    merupakan unsur-unsur pembentuk dan katalis dalam sintesis klorofil.
4. Air :
    bila kekurangan air akan terjadi desintegrasi klorofil.


Semoga Bermanfaat Bagi teman - teman.....JBU

Minggu, 17 April 2011

Pengertian Oksigen

Posted by, Dona Mantiara
Senin, 18 April 2011


       Oksigen atau zat asam adalah unsur kimia dalam sistem tabel periodik yang mempunyai lambang O dan nomor atom 8. Ia merupakan unsur golongan kalkogen dan dapat dengan mudah bereaksi dengan hampir semua unsur lainnya (utamanya menjadi oksida). Pada Temperatur dan tekanan standar, dua atom unsur ini berikatan menjadi dioksigen, yaitu senyawa gas diatomik dengan rumus O2 yang tidak berwarna, tidak berasa, dan tidak berbau. Oksigen merupakan unsur paling melimpah ketiga di alam semesta berdasarkan massa dan unsur paling melimpah di kerak Bumi. Gas oksigen diatomik mengisi 20,9% volume atmosfer bumi..
       Semua kelompok molekul struktural yang terdapat pada organisme hidup, seperti protein, karbohidrat, dan lemak, mengandung oksigen. Demikian pula senyawa anorganik yang terdapat pada cangkang, gigi, dan tulang hewan. Oksigen dalam bentuk O2 dihasilkan dari air oleh sianobakteri, ganggang, dan tumbuhan selama fotosintesis, dan digunakan pada respirasi sel oleh hampir semua makhluk hidup. Oksigen beracun bagi organisme anaerob, yang merupakan bentuk kehidupan paling dominan pada masa-masa awal evolusi kehidupan. O2 kemudian mulai berakumulasi pada atomsfer sekitar 2,5 miliar tahun yang lalu.[4] Terdapat pula alotrop oksigen lainnya, yaitu ozon (O3). Lapisan ozon pada atomsfer membantu melindungi biosfer dari radiasi ultraviolet, namun pada permukaan bumi ia adalah polutan yang merupakan produk samping dari asbut.

       Oksigen secara terpisah ditemukan oleh Carl Wilhelm Scheele di Uppsala pada tahun 1773 dan Joseph Priestley di Wiltshire pada tahun 1774. Temuan Priestley lebih terkenal oleh karena publikasinya merupakan yang pertama kali dicetak. Istilah oxygen diciptakan oleh Antoine Lavoisier pada tahun 1777,[5] yang eksperimennya dengan oksigen berhasil meruntuhkan teori flogiston pembakaran dan korosi yang terkenal. Oksigen secara industri dihasilkan dengan distilasi bertingkat udara cair, dengan munggunakan zeolit untuk memisahkan karbon dioksida dan nitrogen dari udara, ataupun elektrolisis air, dll. Oksigen digunakan dalam produksi baja, plastik, dan tekstil, ia juga digunakan sebagai propelan roket, untuk terapi oksigen, dan sebagai penyokong kehidupan pada pesawat terbang, kapal selam, penerbangan luar angkasa, dan penyelaman.

A. Struktur Oksigen

       Pada temperatur dan tekanan standar, oksigen berupa gas tak berwarna dan tak berasa dengan rumus kimia O2, di mana dua atom oksigen secara kimiawi berikatan dengan konfigurasi elektron triplet spin. Ikatan ini memiliki orde ikatan dua dan sering dijelaskan secara sederhana sebagai ikatan ganda ataupun sebagai kombinasi satu ikatan dua elektron dengan dua ikatan tiga elektron.
Oksigen triplet merupakan keadaan dasar molekul O2. Konfigurasi elektron molekul ini memiliki dua elektron tak berpasangan yang menduduki dua orbital molekul yang berdegenerasi. Kedua orbital ini dikelompokkan sebagai antiikat (melemahkan orde ikatan dari tiga menjadi dua), sehingga ikatan oksigen diatomik adalah lebih lemah daripada ikatan rangkap tiga nitrogen.
      Dalam bentuk triplet yang normal, molekul O2 bersifat paramagnetik oleh karena spin momen magnetik elektron tak berpasangan molekul tersebut dan energi pertukaran negatif antara molekul O2 yang bersebelahan. Oksigen cair akan tertarik kepada magnet, sedemikiannya pada percobaan laboratorium, jembatan oksigen cair akan terbentuk di antara dua kutub magnet kuat.

Oksigen Singlet, adalah nama molekul oksigen O2 yang kesemuaan spin elektronnya berpasangan. Ia lebih reaktif terhadap molekul organik pada umumnya. Secara alami, oksigen singlet umumnya dihasilkan dari air selama fotosintesis. Ia juga dihasilkan di troposfer melalui fotolisis ozon oleh sinar berpanjang gelombang pendek, dan oleh sistem kekebalan tubuh sebagai sumber oksigen aktif. Karotenoid pada organisme yang berfotosintesis (kemungkinan juga ada pada hewan) memainkan peran yang penting dalam menyerap oksigen singlet dan mengubahnya menjadi berkeadaan dasar tak tereksitasi sebelum ia menyebabkan kerusakan pada jaringan.

B. Alotrop

Alotrop oksigen elementer yang umumnya ditemukan di bumi adalah dioksigen O2. Ia memiliki panjang ikat 121 pm dan energi ikat 498 kJ·mol-1.Altrop oksigen ini digunakan oleh makhluk hidup dalam respirasi sel dan merupakan komponen utama atmosfer bumi.
Trioksigen (O3), dikenal sebagai ozon, merupakan alotrop oksigen yang sangat reaktif dan dapat merusak jaringan paru-paru.  Ozon diproduksi di atmosfer bumi ketika O2 bergabung dengan oksigen atomik yang dihasilkan dari pemisahan O2 oleh radiasi ultraviolet (UV).  Oleh karena ozon menyerap gelombang UV dengan sangat kuat, lapisan ozon yang berada di atmosfer berfungsi sebagai perisai radiasi yang melindungi planet. Namun, dekat permukaan bumi, ozon merupakan polutan udara yang dibentuk dari produk sampingan pembakaran otomobil.
Molekul metastabil tetraoksigen (O4) ditemukan pada tahun 2001, dan diasumsikan terdapat pada salah satu enam fase oksigen padat. Hal ini dibuktikan pada tahun 2006, dengan menekan O2 sampai dengan 20 GPa, dan ditemukan struktur gerombol rombohedral O8. Gerombol ini berpotensi sebagai oksidator yang lebih kuat daripada O2 maupun O3, dan dapat digunakan dalam bahan bakar roket.[Fase logam oksigen ditemukan pada tahun 1990 ketika oksigen padat ditekan sampai di atas 96 GPa. Ditemukan pula pada tahun 1998 bahwa pada suhu yang sangat rendah, fase ini menjadi superkonduktor.



Jumat, 15 April 2011

Pertumbuhan Bakteri

Posted by, Dona Mantiara
Sabtu, 16 April 2011

     Pertumbuhan merupakan proses perubahan bentuk yang semula kecil kemudian menjadi besar. Pertumbuhan menyangkut pertambahan volume dari individu itu sendiri. Pertumbuhan pada umumnya tergantung pada kondisi bahan makanan dan juga lingkungan. Apabila kondisi makanan dan lingkungan cocok untuk mikroorganisme tersebut, maka mikroorganisme akan tumbuh dengan waktu yang relatif singkat dan sempurna.

     Pertumbuhan merupakan proses bertambahnya ukuran atau subtansi atau masa zat suatu organisme, misalnya kita makhluk makro ini dikatakan tumbuh ketika bertambah tinggi, bertambah besar atau bertambah berat. Pada organisme bersel satu pertumbuhan lebih diartikan sebagai pertumbuhan koloni, yaitu pertambahan jumlah koloni, ukuran koloni yang semakin besar atau subtansi atau massa mikroba dalam koloni tersebut semakin banyak, pertumbuhan pada mikroba diartikan sebagai pertambahan jumlah sel mikroba itu sendiri.

      Pertumbuhan mikroorganisme tergantung dari tersediannya air. Bahan-bahan yang terlarut dalam air, yang digunakan oleh mikroorganisme untuk membentuk bahan sel dan memperoleh energi, adalah bahan makanan. Tuntutan berebagai mikroorganisme yang menyangkut susunan larutan makanan dan persyaratan lingkungan tertentu, sangat berbeda-beda. Oleh karena itu diperkenalkan banyak resep untuk membuat media biak untuk mikroorganisme.

      Mikroba merupakan mikroorganisme yang perlu diketahui kemampuannya untuk tumbuh dan hidup sebab beberapa diantaranya sering dimanfaatkan untuk keperluan penelitian.Sampai sekarang ini perkembangan ilmu pengetahuan terus menggali potensi apa yang terdapat di dalam mikriba, oleh karena itu perlu diketahui seluk beluk dari mikroba itu sendiri. Salah satunya yaitu faktor- faktor apa saja yang dapat mempengaruhi pertumbuhannya. Setiap mikroba memiliki karakteristik kondisi pertumbuhan yang berbeda- beda. Pertumbuhan bakteri pada kondisi yang optimum lebih cepat jika dibandingkan dengan jamur dan kapang. Hal ini disebabkan karena bakteri memiliki struktur sel yang lebih sederhana, sehingga sebagian besar bakteri memiliki waktu generasi hanya sekitar 20 menit jika dibandingkan dengan khamir dan kapang yang struktur selnya lebih rumit dan waktu  generasinya yang cukup lama.

Pengertian Pertumbuhan Mikroorganisme
     Pertumbuhan pada mikroorganisme diartikan sebagai penambahan jumlah atau total massa sel yang melebihi inokulum asalnya. Pertumbuhan merupakan suatu proses kehidupan yang irreversible artinya tidak dapat dibalik kejadiannya. Pertumbuhan didefinisikan sebagai pertambahan kuantitas konstituen seluler dan struktur organisme yang dapat dinyatakan dengan ukuran, diikuti pertambahan jumlah, pertambahan ukuran sel, pertambahan berat atau massa dan parameter lain. Sebagai hasil pertambahan ukuran dan pembelahan sel atau pertambahan jumlah sel maka terjadi pertumbuhan populasi mikroba.

      Pertumbuhan mikroba dalam suatu medium mengalami fase-fase yang berbeda, yang berturut-turut disebut dengan fase lag, fase eksponensial, fase stasioner dan fase kematian. Pada fase kematian eksponensial tidak diamati pada kondisi umum pertumbuhan kultur bakteri, kecuali bila kematian dipercepat dengan penambahan zat kimia toksik, panas atau radiasi.
Dalam pertumbuhannya setiap makhluk hidup membutuhkan nutrisi yang mencukupi serta kondisi lingkungan yang mendukung demi proses pertumbuhan tersebut, termasuk juga bakteri. Pertumbuhan bakteri pada umumnya akan dipengaruhi oleh faktor lingkungan. Pengaruh faktor ini akan memberikan gambaran yang memperlihatkan peningkatan jumlah sel yang berbeda dan pada akhirnya memberikan gambaran pula terhadap kurva pertumbuhannya.
Kebutuhan mikroorganisme untuk pertumbuhan dapat dibedakan menjadi dua kategori, yaitu: kebutuhan fisik dan kebutuhan kimiawi atau kemis. Aspek-aspek fisik dapat mencakup suhu, pH dan tekanan osmotik. Sedangkan kebutuhan kemis meliputi air, sumber karbon, nitrogen oksigen, mineral-mineral dan faktor penumbuh.
Pada organisme multiselular (banyak sel), yang disebut pertumbuhan adalah peningkatan jumlah sel per organisme, dimana ukuran sel juga menjadi lebih besar. Pada organisme uniselular (bersel tunggal) pertumbuhan adalah pertambahan jumlah sel, yang juga berarti pertambahan jumlah organisme yang membentuk populasi atau suatu biakan. Pada organisme yang membentuk soenositik (aselular), selama pertumbuhan ukuran sel menjadi besar, tetapi tidak terjadi pembelahan sel.
Pada mikroorganime, pertumbuhan individu (sel) dapat berubah langsung menjadi pertumbuhan populasi. Sehingga batas antara pertumbuhan sel dan pertumbuhan populasi, serta sebagai satu kesatuan populasi yang kemudian terjadi, kadang-kadang karena terlalu cepat perubahannya, sulit untuk diamati dan dibedakan.
Pertumbuhan dalam keadaan kesetimbangan bila terjadi secara teratur pada kondisi konstan, sehingga jumlah pertambahan komponen kimia juga konstan. Misalnya, pertambahan jumlah massa sel sebanyak dua kali dalam keadaan kesetimbangan akan mengakibatkan penambahan jumlah komponen sel seperti air, protein,

Faktor-faktor yang Mempengaruhi Pertumbuhan Mikroba
1. Tingkat keasaman (pH)
Kebanyakan mikroba tumbuh baik pada pH sekitar netral dan pH 4,6 – 7,0 merupakan kondisi optimum untuk pertumbuhan bakteri, sedangkan kapang dan khamir tumbuh pada pH yang lebih rendah.
2. Suhu
Suhu merupakan salah satu factor lingkungan yang berpengaruh terhadap pertumbuhan mikroba. Setiap mikroba mempunyai kisaran suhu dan suhu optimum tertentu untuk pertumbuhannya. Berdasarkan kisaran suhu pertumbuhan, mikroba dibedakan atas tiga kelompok sebagai berikut:
  1. Psikrofil, yaitu mikroba yang mempunyai kisaran suhu pertumbuhan pada suhu
0-20o C.
  1. Mesofil, yaitu mikroba yang mempunyai kisaran suhu pertumbuhan 20- 45o C.
  2. Termofil, yaitu mikroba yang suhu pertumbuhannya diatas 45 o C.
Kebanyakan mikroba perusak pangan merupakan mikroba mesofil, yaitu tumbuh baik pada suhu ruangan atau suhu kamar. Bakteri pathogen umumnya mempunyai suhu optimum pertumbuhan sekitar 37o C, yang juga adalah suhu tubuh manusia. Oleh karena itu suhu tubuh manusia merupakan suhu yang baik untuk pertumbuhan beberapa bakteri pathogen. Mikroba perusak dan pathogen umumnya dapat tumbuh pada kisaran suhu 4–66oC.
3. Nutrient
Mikroba sama dengan makhluk hidup lainnya, memerlukan suplai nutrisi sebagai sumber energi dan pertumbuhan selnya. Unsur-unsur dasar tersebut adalah : karbon, nitrogen, hidrogen, oksigen, sulfur, fosfor, zat besi dan sejumlah kecil logam lainnya. Ketiadaan atau kekurangan sumber-sumber nutrisi ini dapat mempengaruhi pertumbuhan mikroba hingga pada akhirnya dapat menyebabkan kematian.Kondisi tidak bersih dan higinis pada lingkungan adalah kondisi yang menyediakan sumber nutrisi bagi pertumbuhan mikroba sehingga mikroba dapat tumbuh berkembang di lingkungan seperti ini. Oleh karena itu, prinsip daripada menciptakan lingkungan bersih dan higinis adalah untuk mengeliminir dan meminimalisir sumber nutrisi bagi mikroba agar pertumbuhannya terkendali.
4. Oksigen
Mikroba mempunyai kebutuhan oksigen yang berbeda-beda untuk pertumbuhannya. Berdasarkan kebutuhannya akan oksigen, mikroba dibedakan atas 4 kelompok sebagai berikut:
• Aerob, yaitu mikroba yang membutuhkan oksigen untuk pertumbuhannya.
• Anaerob, yaitu mikroba yang tumbuh tanpa membutuhkan oksigen.
• Anaerob fakultatif, yaitu mikroba yang dapat tumbuh dengan atau tanpa adanya oksigen.
• Mikroaerofil, yaitu mikroba yang membutuhkan oksigen pada konsentrasi yang lebih rendah daripada konsentrasi oksigen yang normal di udara. Mikroba perusak pangan sebagian besar tergolong aerob, yaitu membutuhkan oksigen untuk pertumbuhannya, kecuali bakteri yang dapat tumbuh pada saluran pencernaan manusia yang tergolong anaerob fakultatif.
Media Biak dan Persyaratan bagi Pertumbuhan
Sejumlah besar mikroorganisme yang tidak banyak tuntutan, misalnya banyak pseudomonad dalam tanah dan air, dan juga Escherechia coli tumbuh subur dalam larutan biak sesuai susunannya. Selain susunan pertumbuhannya banyak mikroorganisme masih memerlukan unsur-unsur lain yakni unsur pelengkap, vitamin-vitamin dan unsur senyawa tanbahan lain. Sesuatu larutan biak yang dapat dibuat dari senyawa-senyawa kimia tertentu, disebut media biak sintetik. Harus diusahakan agar untuk setiap mikroorganisme dapat ditetapkan kebutuhan bahan makanan minuman dan mengembangkan medium minimum yang tidak mengandung lebih banyak komponen daripada yang diperlukan untuk pertumbuhan. Jenis-jenis yang mempunyai tuntutan tinggi memerlukan sejumlah besar zat pelengkap. Untuk Leuconostoc mesenteroides telah mengembangkan suatu medium sintetik yang mengandung lebih dari 40 komponen.
Media biak kompleks. Untuk banyak mikroorganisme bertuntutan tinggi belum dikenal benar bahan-bahan makanan yang diperlukan. Orang membiakkannya dalam larutan biak yang mengandung ekstrak ragi, otolisat ragi, pepton atau ekstrak daging. Untuk beberapa kelompok organisme lazim juga digunakan: rempah-rempah, dekok rumput kering, sari buah prem, sari wortel, santan dan untuk cendawan koprofil juga sari perasan tahi kuda. Mengingat biaya, larutan-larutan biak tidak dibentuk dari senyawa-senyawa murni tetapi lebih disukai untuk menggunakan zat-zat kompleks, seperti air dadih, melase, air rendaman jagung atau ekstrak kedele, yang sebagai produk sisa tersedia dengan harga murah. Media biak seperti ini disebut media biak kompleks.
Media biak padat. untuk membuat biak padat pada larutan biak cair ditambahkan bahan pemadat yang memberi konsistensi seperti selai pada larutan air. Hanya untuk keperluan tertentu masih digunakan gelatin, karena sudah mencair pada suhu 26-30o C dan banyak mikroorganisme mampu mencairkan gelatin. Bahan pemadat yang hampir ideal adalah agar. Agar adalah polisakarida dengan susunan kompleks dan terajut kuat berasal dari ganggan laut. Agar hanya dipengaruhi oleh sejumlah kecil bakteri. Bila diperlukan media biak padat tanpa komponen-komponen organik, maka dipakai silikagel sebagai bahan pemadat.
Pembiakan mikroba dalam laboratorium memerlukan medium yang berisi zat hara serta lingkungan pertumbuhan yang sesuai dengan mikroorganisme. Zat hara digunakan oleh mikroorganisme untuk pertumbuhan, sintesis sel, keperluan energi dalam metabolisme, dan pergerakkan. Lazimnya, medium biakan berisi air, sumber energi, zat hara sebagai sumber karbon, nitrogen, sulfur, fosfat, oksigen, hidrogen serta unsur-unsur sekelumit (trace elements). Media terbagi menjadi 2 golongan besar, yakni:
  1. a. Media hidup
Media hidup  umumnya dipakai dalam laboratorium virologi untuk pembiakan berbagai virus, sedangkan dalam bakteriologi hanya beberapa jenis kuman tertentu saja dan terutama hewan percobaan. Contoh media hidup antara lain: hewan percobaan (termasuk manusia), telur berembrio, biakan jaringan, dan sel-sel biakan bakteri tertentu untuk bakteriofaga.
  1. b. Media mati
(1) Berdasarkan konsistensinya
  • Media padat, terbagi media agar miring, agar deep, misalnya: agar buylon, agar endo, agar ss, dan sebagainya.
  • Media setengah padat: agar buylon setengah padat (buylon=kaldu).
  • Media cair : air buylon, air pepton, deret gula-gula.
Media padat diperoleh dengan menambahkan agar. Agar berasal dari ganggang digunakan sebagai bahan pemadat karena tidak diuraikan oleh mikroba, dan membeku pada suhu di atas 45o C. Media setengah padat digunakan untuk melihat gerak kuman secara mikroskopik.
(2) Berdasar komposisi atau susunan bahannya
(a) Media sintetis
Yakni media yang mempunyai kadungan dan isi bahan yang telah diketahui secara terperinci. Media sintetik sering digunakan untuk mempelajari sifat faal dan genetika mikroorganisme. Senyawa anorganik dan organik ditambahkan dalam media sintetik harus murni, sehingga harganya mahal. Contoh: cairan Hanks, Locke, Thyrode, Eagle. Dalam (laboratorium virologi).
(b) Media non-sintetis
Merupakan media yang mengandung bahan-bahan yang tidak diketahui secara pasti baik kadar maupun susunannya. Contohnya: ekstrak daging, pepton, ekstrak ragi, kaldu daging. Seringkali dalam media ini ditambahkan darah, serum, vitamin, asam amino, atau nukleosida.
(c) Media semi-sintetis
Misalnya, cairan Hanks yang ditambahkan serum (laboratorium virologi).
(3) Berdasar sifat fisiologik dan biologik kuman dan untuk tujuan isolasi
(a) Media persemaian (nutrient media), yaitu media yang sangat kaya akan zat makanan dan mempunyai susunan bahan sedemikian rupa sehingga hanya menyuburkan satu jenis kuman yang dicari saja. Contoh: perbenihan Kauffmann untuk persemaian Salmonella typhi.
(b)Media eksklusif adalah media yang hanya memungkinkan tumbuhnya satu jenis kuman saja, sedangkan yang lainnya dihambat atau dimatikan. Contoh: perbenihan Dieudoune atau air pepton alkalis yang mempunyai pH yang tinggi sehingga kuman lain tidak dapat tumbuh, kecuali Vibrio.
(c) Media selekti/ elektif yakni media yang mempunyai susunan bahan sedemikian rupa sehingga kuman tertentu dapat tumbuh tetapi dengan masing-masing koloni yang sangat khas. Contoh: agar endo, untuk kuman golongan coli (coliform) akan berwarna merah, sedangkan Salmonella koloninya tidak berwarna.
Reproduksi Mikroorganisme
Perkembangan mikroorganisme dapat terjadi secara seksual dan aseksual yang paling banyak terjadi adalah perkembangbiakan aseksual. Perkembangan biakan aseksual terjadi dengan pembelahan biner, yakni satu sel induk membelah menjadi dua sel anak. Kemudian masing-masing sel anak membentuk dua sel anak lagi, dan seterusnya. Tipe lain cara perkembangbiakan aseksual disamping pembelahan biner (binaryfission) adalah pembelahan ganda (multiplefission) dan perkuncupan (budding).